Place the laser at the back of the lecture room, darken the room completely, and project the interference pattern on the screen at the front of the room. (See WARNING.) A flashlight is provided to facilitate working in the darkened room.

Screw the diverging lens (V), of 5 cm focal length, into the laser housing. This lens converts the beam into one coming from a point source. Place Lloyd's mirror (T) in the fitting nearest the laser, with the adjustable end of the mirror nearest the laser. Place a second diverging lens (Q), also of 5 cm focal length, in the center fitting, and turn it so that the lens will not be in the laser beam. The purpose of this lens, when later turned into the beam, is simply to enlarge the pattern.

Turn on the laser and, starting with the tilt of the mirror such that the beam strikes only the front edge (and not the face) of the mirror, gradually lower the front edge until the beam first strikes the mirror along the entire length of its face. A finely spaced pattern of interference fringes should now be visible on the screen. Now turn the enlarging lens (Q) into the beam, and readjust the tilt of the mirror as desired. Thus enlarged, the fringes are amazingly obvious to the entire class. The spacing of the fringes can be varied by varying the tilt of the mirror.

WARNING. Never allow the direct beam from the laser to enter the eye. Warn students that they should not look into the beam.