To enable students to see to advantage, the recommended positioning of apparatus on the lecture table is shown by Figs. 1, 2 and 3 on the back of this sheet.

Reflection of Divergent Beam: Place the radiometer R, the heater H, and the screen S near the front center of the lecture table as shown in Fig. 1, with R and H from 12" to 15" apart. Turn the heater on and observe that it has no effect on the radiometer. Now set the aluminum reflector AR in the position shown, about 12" to 15" from the radiometer and the heater, and turn the reflector about a vertical axis until the effect on the radiometer is a maximum.

Focusing with Parabolic Mirrors: Set the two parabolic mirrors M in the positions shown in Fig. 2, and about 10 to 15 ft apart. Line up the axes of the mirrors as accurately as possible by sighting along the long arm of the tripod base. Place the radiometer R at the principal focus on one mirror, and the heater H at the principal focus of the other mirror. (The radiometer or heater will be at the principal focus if centered on the mirror with the two tripod bases against one another.) Turn on the heater and observe the resulting rapid motion of the radiometer vane. Remove the mirror behind the heater, turn off the heater, and be prepared to explain the fact that the radiometer, after stopping, begins to spin in the opposite direction.

Reflection of Parallel Beam: Set the mirrors M, the radiometer R, and the heater H as shown in Fig. 3. Turn on the heater and note that there is no effect on the radiometer. Now place the aluminum reflector AR in the position shown and rotate about a vertical axis until the radiometer vane spins.
Fig. 1. Reflection of divergent beam.

Fig. 2. Focusing with parabolic mirrors.

Fig. 3. Reflection of parallel beam.